Uniqueness of Meromorphic Functions Sharing Values with their nth Order Exact Differences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of Meromorphic Functions Sharing Values

In this paper, we investigate the problem of the uniqueness of meromorphic function sharing values. It is turned out that our results are natural extensions of Q. C. Zhang and G. G. Gundersen.

متن کامل

Uniqueness of meromorphic functions sharing one value with their derivatives

In the paper we deal with the uniqueness problem of meromorphic functions sharing a finite value with their derivatives. The results in this paper improve those given by Lahiri-Sarkar, Liu-Yang and others. In addition, a recent result of the first present author is complemented in this paper.

متن کامل

Uniqueness of Meromorphic Functions Sharing Three Weighted Values

In this paper, we study the uniqueness of meromorphic functions sharing three values and improve some previous results. 2000 Mathematics Subject Classification: 30D35

متن کامل

Uniqueness of meromorphic functions sharing one value

In this paper, we discuss the problem of meromorphic functions sharing one value and obtain two theorems which improve a result of C.C.Yang and X.H.Hua.

متن کامل

Uniqueness and value-sharing of meromorphic functions

Abstract. Concerning the uniqueness and sharing values of meromorphic functions, many results about meromorphic functions that share more than or equal to two values have been obtained. In this paper, we shall study meromorphic functions that share only one value, and prove the following result: For n ≥ 11 and two meromorphic functions f(z) and g(z) , if ff ′ and gg share the same nonzero and f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis Mathematica

سال: 2018

ISSN: 0133-3852,1588-273X

DOI: 10.1007/s10476-018-0605-2